UPR in palmitate-treated pancreatic beta-cells is not affected by altering oxidation of the fatty acid

نویسندگان

  • Ernest Sargsyan
  • E-ri Maria Sol
  • Peter Bergsten
چکیده

BACKGROUND Elevated levels of lipids are detrimental for beta-cell function and mass. One of the mechanisms of how fatty acids induce apoptosis is development of the unfolded protein response (UPR). It is still far from understood how fatty acids activate the UPR, however. METHODS We examined how palmitate-induced activation of the UPR was affected by altering the metabolism of the fatty acid in insulin-secreting INS-1E and MIN6 cell lines and intact human islets. To increase oxidation, we used low glucose (5.5 mM) or AICAR; and to reduce oxidation, we used high glucose (25 mM) or etomoxir. UPR was measured after 3, 24 and 48 hours of palmitate treatment. RESULTS Modulation of palmitate oxidation by either glucose or the pharmacological agents did not affect palmitate-induced UPR activation. CONCLUSION Our finding suggests that other factors than oxidation of palmitate play a role in the activation of UPR in fatty acid-treated beta-cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis.

Chronic free fatty acid (FFA) exposure induces pancreatic beta-cell death, which may contribute to the development of type 2 diabetes. The mechanisms involved in FFA-induced cell death are not completely understood. Here we have investigated the effect of FFA on endoplasmic reticulum (ER) stress pathways in INS-1 pancreatic beta-cells. INS-1 cells exposed to palmitate for 16-24 h under serum-fr...

متن کامل

PPARδ Activation Rescues Pancreatic β-Cell Line INS-1E from Palmitate-Induced Endoplasmic Reticulum Stress through Enhanced Fatty Acid Oxidation

One of the key factors responsible for the development of type 2 diabetes is the loss of functional pancreatic β cells. This occurs due to a chronic exposure to a high fatty acid environment. ER stress is caused by an accumulation of irreversible misfold or unfold protein: these trigger the death of functional pancreatic β cells. PPARδ is an orphan nuclear receptor. It plays a pivotal role in r...

متن کامل

Uncoupling protein-2 attenuates palmitoleate protection against the cytotoxic production of mitochondrial reactive oxygen species in INS-1E insulinoma cells

High glucose and fatty acid levels impair pancreatic beta cell function. We have recently shown that palmitate-induced loss of INS-1E insulinoma cells is related to increased reactive oxygen species (ROS) production as both toxic effects are prevented by palmitoleate. Here we show that palmitate-induced ROS are mostly mitochondrial: oxidation of MitoSOX, a mitochondria-targeted superoxide probe...

متن کامل

Regulation of pancreatic beta-cell mitochondrial metabolism: influence of Ca2+, substrate and ADP.

To gain insight into the regulation of pancreatic beta-cell mitochondrial metabolism, the direct effects on respiration of different mitochondrial substrates, variations in the ATP/ADP ratio and free Ca2+ were examined using isolated mitochondria and permeabilized clonal pancreatic beta-cells (HIT). Respiration from pyruvate was high and not influenced by Ca2+ in State 3 or under various redox ...

متن کامل

Skeletal muscle fatty acid oxidation is not directly associated with AMPK or ACC2 phosphorylation.

Rescue of palmitate-induced insulin resistance has been linked with improvements in fatty acid oxidation, but importantly, not always with concurrently altered AMPK or ACC2 phosphorylation. Therefore, we examined the interrelationships among AMPK, ACC2, and fatty acid oxidation under 12 controlled conditions in isolated muscle. Incubation of soleus muscle (0-12 h) did not alter fatty acid oxida...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2011